
1

EDBT’06 Tutorial
Graph Mining: Sharma Chakravarthy3/27/2006

Graph Mining Techniques
and Their Applications

Sharma Chakravarthy
Information Technology Laboratory

Computer Science and Engineering Department
The University of Texas at Arlington, Arlington, TX 76009

Email: sharma@cse.uta.edu
URL: http://itlab.uta.edu/sharma

EDBT’06 Tutorial: SC
3/27/2006

Slide 2

Tutorial Outline
• Data Mining Overview
• Need for Graph Mining

Applications
• Graph Mining Approaches

Subdue
SQL-Based Subdue (HdbSubdue)
AGM
FSG
gSpan

• Conclusions
• References

EDBT’06 Tutorial: SC
3/27/2006

Slide 3

Motivation

Fraud division, some large telephone company:

“How do we find these guys? There are 10 billion
records on 10 million customers in the main
database. With all this information we have
about our customers and all the calls they make,
can’t you just ask the database to figure out
which lines have been set-up temporarily and
exhibited similar calling patterns in the same
time periods? The information is in there, I just
know it …”

EDBT’06 Tutorial: SC
3/27/2006

Slide 4

Problem
• “Find-similar” problem just described is hard

e.g., “What products need to be improved?”
e.g., “Which books won’t be checked out and can be
taken off the shelves?”

Why?
• Massive amounts of data

More and more online data stores (e.g., Web, click
streams, corporate databases, etc.)

• No easy way to describe what to look for
• Traditional, interactive approaches fail

Size of data, different purposes

2

EDBT’06 Tutorial: SC
3/27/2006

Slide 5

Data Mining

• Data Mining (DM) is part of the knowledge
discovery process carried out to extract valid
patterns and relationships in very large data sets

• Regarded as unsupervised learning from basic
facts (axioms) and data

• Roots in AI and statistics
Uses techniques from machine learning, pattern
recognition, statistics, database, visualization, etc.

EDBT’06 Tutorial: SC
3/27/2006

Slide 6

Data Mining has come about due to

• Convergence of
multiple
technologies

DM

Increase in
Computing
Power

Improved data
management

Application
Of statistical/
Machine learning
algorithms

EDBT’06 Tutorial: SC
3/27/2006

Slide 7

Data Mining is NOT …

• Data warehousing
• Ad hoc query/reporting
• Online Analytical Processing (OLAP)
• Data Visualization
• Agents/mediators,
• Pervasive computing, …

EDBT’06 Tutorial: SC
3/27/2006

Slide 8

What DM will NOT do !

• Substitute for human intuition and
discovery

• I don’t think a DM system will (ever?)
discover e = mc2

• I don’t think DM will (ever?) discover
PV = RT

• I don’t think DM will (ever?) discover
gravity, Newton’s law’s of motion

• It may discover new black holes !

3

EDBT’06 Tutorial: SC
3/27/2006

Slide 9

Need for Graph Mining
• Association Rule Mining, decision trees… mine transactional

data.
• Graph based mining techniques are used for mining data that are

structural in nature (chemical compounds, complex proteins,
VLSI circuits, social networks, …) as mapping them to other
representations is not possible or will lead to the loss of structural
information

• Significant work in the area includes the Subdue substructure
discovery algorithm (Cook & Holder), HdbSubdue (chakrvarthy,
Beera, Padmanabhan), the apriori graph mining (AGM)
(Inokuchi, Washio, and Motoda), the frequent subgraph (FSG)
technique (Karypis & Kuramochi), and the gSpan approach (J.
Han) (also SPIN (Huan, Wang, Prins, and Yang))

EDBT’06 Tutorial: SC
3/27/2006

Slide 10

Application:

To determine which amino
acid chain dominates in a
particular protein

Protein

Protein represented
using Graph

O

N

H

NH

CN

C

COCO

EDBT’06 Tutorial: SC
3/27/2006

Slide 11

Application Domains
• Chemical Reaction chains
• CAD Circuit Analysis
• Social Networks
• Credit Domains
• Web analysis
• Games (Chess, Tic Tac toe)
• Program Source Code analysis
• Chinese Character data bases
• Geology
• Aviation Data Bases

EDBT’06 Tutorial: SC
3/27/2006

Slide 12

Graph Based Data Mining

A Graph representation of the database is intuitive and an obvious
choice.
Graphs can be used to accurately model and represent scientific
data sets. Graphs are suitable for capturing arbitrary relations
between the various objects.
Data Instance Graph Instance
Object Vertex
Object's Attributes Vertex Label
Relation Between Two Objects Edge
Type Of Relation Edge Label

• Graph based data mining aims at discovering
interesting and repetitive patterns within these
structural representations of data.

4

EDBT’06 Tutorial: SC
3/27/2006

Slide 13

Graph Mining Overview
• A substructure is a connected subgraph;

need to differentiate between substructures
and substructure instances

• A connected subgraph is a subgraph of the
original graph where there is a path between
any two vertices

• A subgraph Gs = (Vs, Es) of G = (V, E) is
induced if Es contains all the edges of E that
connect vertices in Vs

• Directed and undirected edges are needed;
multiple edges between two nodes need to
be accommodated; cycles need to be
handled

EDBT’06 Tutorial: SC
3/27/2006

Slide 14

Graph Mining: Complexity
• Enumerating all the substructures of a

graph has exponential complexity
• Subgraph isomorphism is NP complete
• Generating canonical labels is O(|V|!),

where V is the number of vertices
• All approaches have to deal with the

above in order to be able to work on
large data sets

• Different approaches do it differently;
scalability depends on its and the use of
buffers

EDBT’06 Tutorial: SC
3/27/2006

Slide 15

Subdue
• One of the earliest work in Graph based data

mining
Uses sparse adjacency matrix for graph
representation

• Substructures are evaluated using a metric
called Minimum Description Length principle
based on adjacency matrices

• Capable of matching two graphs, differing by
the number of vertices specified by the
threshold parameter, inexactly

• Performs hierarchical clustering by
compressing the input graph with best
substructure in each iteration

EDBT’06 Tutorial: SC
3/27/2006

Slide 16

Subdue

• Capable of supervised discovery using
positive and negative examples

• Available main memory limits the largest
dataset that can be handled

• An SQL-based subdue addresses
scalability

• A computationally constrained beam-
search is used for subgraph generation

• A branch and bound algorithm is used for
inexact match

5

EDBT’06 Tutorial: SC
3/27/2006

Slide 17

AGM

• First to propose apriori-type algorithm for
graph mining

• Detects frequent induced subgraphs for a
given support

• Follows apriori algorithm
• Not much optimization; hence

performance is not that good and is not
scalable!

EDBT’06 Tutorial: SC
3/27/2006

Slide 18

FSG

• FSG is used for frequent subgraph discovery
• Given a graph dataset G = {G1,G2,G3, · · ·}, it discovers

all connected subgraphs that are found in at least the
support threshold percent of the input graphs

• Uses a (sparse) adjacency matrix for graph representation
• A canonical label is generated by flattening the adjacency

matrix of a graph (optimization)
• At each iteration FSG generates candidate subgraphs by

adding one edge to the previous iteration’s frequent
subgraph (optimization)

• Graph isomorphism is checked by comparing canonical
labels (optimization)

EDBT’06 Tutorial: SC
3/27/2006

Slide 19

gSpan

• Avoids candidate generation
• Builds a new lexicographical ordering

among graphs and maps each graph to a
unique minimum DFS code as its
canonical label

• Seems to outperform FSG
• Amenable to parallelization
• Does not handle cycles and multiple edges

EDBT’06 Tutorial: SC
3/27/2006

Slide 20

Subdue Example

object

triangle

R1

C1
T1
S1

T2
S2

T3
S3

T4
S4

Input Database Substructure S1
(graph form)

Compressed Database

R1

C1
object

squareon

shape

shape S1S1S1 S1S1S1 S1S1S1

S1S1S1

6

EDBT’06 Tutorial: SC
3/27/2006

Slide 21

Subdue Substructure Discovery System

• Subdue Substructure discovery system is a graph based data
mining system that discovers interesting and repetitive patterns
within graph representations of data.

• It accepts as input a forest and identifies the substructure that best
compresses the input graph using the minimum description length
(MDL) principle.

• It is capable of identifying both exact and inexact (isomorphic)
substructures within a graph

• It uses a branch and bound algorithm for inexact matches
(substructures that vary slightly in their edge and vertex
descriptions).

EDBT’06 Tutorial: SC
3/27/2006

Slide 22

Subdue
• Unsupervised learning

Subdue finds the most prevalent substructure from
a set of unclassified input graphs

• Supervised learning
Subdue finds discriminating patterns from a set of
classified (positive – G+ and negative – G-
graphs)

• Hierarchical conceptual clustering
Compresses G with S and iterate

• Incremental Subdue
Uses unsupervised learning

EDBT’06 Tutorial: SC
3/27/2006

Slide 23

Subdue
• Inferring graph grammars and graph

primitives from examples

• Applications
Data mining
Pattern recognition
Machine learning

EDBT’06 Tutorial: SC
3/27/2006

Slide 24

Graph Representation

Subdue represents data as labeled graph.
Vertices represent objects or attributes
Edges represent relationships between objects
Input: Labeled graph
Output: Discovered patterns and instances and
their compression.

A substructure is a connected subgraph
Graph isomorphism is used to identify similar
substructures

7

EDBT’06 Tutorial: SC
3/27/2006

Slide 25

MDL Principle
• Theory to minimize description length (DL)

of data; information theoretic approach
• Has been shown to be good across

domains
• Evaluates substructures based on their

ability to compress DL of graph
• Description length =DL(S) + DL(G/S)

Depends upon the representation
Substructure that best compresses the
original is chosen

EDBT’06 Tutorial: SC
3/27/2006

Slide 26

MDL Principle (cont.)
• Minimizes description length (DL) of data

• Substructures are evaluated based on their ability to compress
the DL of the entire graph

• MDL = description length of the compressed graph /
description length of the original graph

• DL(G) – Description length of the input graph
• DL(S) – Description length of sub graph
• DL(G|S) – Description length of the graph given the sub graph

DL(G)
MDL =

DL(S) + DL(G|S)

EDBT’06 Tutorial: SC
3/27/2006

Slide 27

Example: Subdue

EDBT’06 Tutorial: SC
3/27/2006

Slide 28

Input
• The input is a file, with all the vertex labels, vertex

numbers, edges (using vertex numbers) and the
edge directions

v 1 A
v 2 B
v 3 C
v 4 D
d 1 2 ab
d 1 3 ac
d 2 4 bd
d 4 3 dc

• ‘d’ stands for a directed edge and ‘u’ stands for
undirected. ‘e’ stands for directed unless specified
as –undirected at the command prompt.

8

EDBT’06 Tutorial: SC
3/27/2006

Slide 29

Subdue Approach
• Create a substructure for each unique vertex label
• Expand each substructure by adding an edge (and

may be a vertex)
• Maintain beam number of substructures for

expansion
• Halting conditions

Discovered substructures > limit
List maintaining the substructures to be expanded
becomes empty
Max size of substructure to be discovered is
reached

EDBT’06 Tutorial: SC
3/27/2006

Slide 30

Output

• Output
Substructure: MDL value = 1.21789, instances = 2

Graph (4v,4e):
v 1 A
v 2 C
v 3 B
v 4 D
d 1 2 ac
d 1 3 ab
d 4 2 dc
d 3 4 bd

EDBT’06 Tutorial: SC
3/27/2006

Slide 31

Subdue Parameters

• Threshold determines the amount of variation permissible in
the vertex and edge descriptions during inexact graph match.

• Nsubs determines the maximum number of substructures
that are returned as the set of best substructures

• Beam determines the maximum number of substructures that
are retained for expansion in the next iteration of the
discovery algorithm

• Minsize constrains the size of substructures returned as best
to be equal to or more than the specified parameter value

EDBT’06 Tutorial: SC
3/27/2006

Slide 32

Algorithm

• SUBDUE(G, limit, beam)
S = vertices(G)
While (computation < limit) and (S <> {})

• Order S from best to worst using MDL and background
knowledge rules

• S = first beam structures of S
• b = first(S)
• E = (b extended by one edge in all possible ways}
• S = S U E

Return the substructure that produces the best
compression ratio

9

EDBT’06 Tutorial: SC
3/27/2006

Slide 33

Algorithm (Contd.)

1. Create substructure for each unique vertex
label

circle

rectangle

left

triangle

square
on

on

triangle

square
on

on
triangle

square
on

on
triangle

square
on

onleft

left left

left

Substructures:

triangle (4), square (4),
circle (1), rectangle (1)

R1

C1

T1

S1

T2

S2

T3

S3

T4

S4
object

triangle

object

squareo
n

shape

shape

R
1

C1

S1S1S1 S1S1S1 S1S1S1

S1S1S1

EDBT’06 Tutorial: SC
3/27/2006

Slide 34

Algorithm (Contd.)
2. Expand best substructure by an edge or

edge+neighboring vertex

circle

rectangle

left

triangle

square
on

on

triangle

square
on

on
triangle

square
on

on
triangle

square
on

onleft

left left

left

Substructures:
triangle

square
on

circleleftsquare

rectangle

square
on

rectangle

triangle
on

R1

C1

T1

S1

T2

S2

T3

S3

T4

S4
object

triangle

object

squareo
n

shape

shape
R
1

C1

S1S1S1 S1S1S1 S1S1S1

S1S1S1

EDBT’06 Tutorial: SC
3/27/2006

Slide 35

Algorithm (cont.)

3. Keep only best substructures on queue
(specified by beam width)

4. Terminate when queue is empty or
#discovered substructures >= limit

5. Compress graph and repeat to generate
hierarchical description

• Constrained to run in polynomial time

R1

C1

T1

S1

T2

S2

T3

S3

T4

S4
object

triangle

object

squareo
n

shape

shape
R
1

C1

S1S1S1 S1S1S1 S1S1S1

S1S1S1

EDBT’06 Tutorial: SC
3/27/2006

Slide 36

Graph Match

• Exact Graph match

• Inexact Graph match

Exact graph match is likely to be restrictive
for real life applications.

10

EDBT’06 Tutorial: SC
3/27/2006

Slide 37

Inexact Graph Match

• Some variations may occur between
instances

• Want to abstract over minor differences
• Difference = cost of transforming one

graph to make it isomorphic to another
• Match if cost/size < threshold

EDBT’06 Tutorial: SC
3/27/2006

Slide 38

Inexact Graph Match

• Minimum graph edit distance

cumulative cost of graph changes required to
transform the first graph into a graph isomorphic
to the second graph.

• Uniform Cost Search

EDBT’06 Tutorial: SC
3/27/2006

Slide 39

Graph 1

Graph 2

• Exact graph match is NP complete
• Bunke and Allerman’s approach

Each distortion is assigned a cost.
A distortion is a basic transformation such as deletion, insertion
of vertices and edges (and their labels)

Fuzzy graph match is a mapping f: N1 N2 U {λ}, N1 and N2 are sets
of nodes of graph 1 and graph 2. A node v є N1 that is mapped to λ is
deleted

• If matchcost <= threshold then two graphs are said to be isomorphic
• Employing computational constraints such as bound on the number of

substructures considered makes subdue run in polynomial time

Mapping : 1 1, 2 2, 3 3, 4 null
1) Delete Edge 3 4 (cost = 2) edge + label
2) Delete vertex 4 (cost = 2) node + label
3) Substitute vertex label C by D for vertex 3
(cost = 1)

Total cost = 5 for this mapping

EDBT’06 Tutorial: SC
3/27/2006

Slide 40

Inexact Graph Match

1 2
A Ba

b

5

3 4
B Ab

aa b

B∅

(1,3) 1 (1,4) 0 (1,5) 1 (1,λ) 1

(2,4)
7

(2,5)
6

(2,λ)
10

(2,3)
3

(2,5)
6

(2,λ)
9

(2,3)
7

(2,4)
7

(2,λ)
10

(2,3)
9

(2,4)
10

(2,5)
9

(2,λ)
11

Least-cost match is
{(1,4), (2,3)}

11

EDBT’06 Tutorial: SC
3/27/2006

Slide 41

Hierarchical Reduction
• Input is a labeled graph
• A substructure is connected subgraph
• A substructure instance is a subgraph isomorphic to substructure definition
• Multiple iterations can create hierarchy

S1

S1

S1

S1

S1

S2

S2 S2

EDBT’06 Tutorial: SC
3/27/2006

Slide 42

Document Classification Example

Control flow in the InfoSift classification system

EDBT’06 Tutorial: SC
3/27/2006

Slide 43

Variants of Subdue

• Concept learner using positive and
negative examples

• Hierarchical reduction
• Similarity detection in social networks
• Database approach to some of the above

EDBT’06 Tutorial: SC
3/27/2006

Slide 44

Why Database Mining?

• Proliferation of relational DW and the need to mine
them

• Data mining must ‘`co-exist’’ with OLAP and other
decision-support applications

• DM will be a sub-process in next generation
Business Intelligence (BI) Systems

• Leverage the RDBMS technology for mining
• Provide an integrated decision-support

environment for analysts

12

EDBT’06 Tutorial: SC
3/27/2006

Slide 45

Data Mining Vs. Database Mining
• Data mining refers to main memory algorithms for

mining
+ Can use arbitrary data structures
+ Can optimize algorithms with proper representation

(hash tree for example)
- Limited memory, add buffer management
- Data has to be siphoned out of its location (mostly a

DBMS or a Data Warehouse)
- Works well only for small data sizes (no scalability)
- Every time data is added to the DB, the process has to

be repeated
Solution? Database Mining – Bringing algorithms

to data instead of taking data to algorithms

EDBT’06 Tutorial: SC
3/27/2006

Slide 46

SQL-based Mining: Advantages

• Leverage 2+ decades of DBMS R&D
• No specialized data structures and

memory management
• Fast development of mining algorithms
• SMP parallelism for free for parallel

database engines
• Data is not replicated outside of DBMS
• SQL may be extended to include ad hoc

mining queries

EDBT’06 Tutorial: SC
3/27/2006

Slide 47

Scalability Issues

• Subdue is a main memory algorithm.
• Good performance for small data sizes
• Entire graph is constructed before applying

the mining algorithm
• Takes a very long time to initialize for 1600K

edges and 800K vertices graph
• Scalability is an issue
• Performs hierarchical reduction of input

EDBT’06 Tutorial: SC
3/27/2006

Slide 48

SQL-Based Graph Mining

• We have mapped the Subdue algorithm using
SQL (exact graph match)

Handles multiple edges
Handles cycles
Performs Hierarchical reduction
Have developed DMDL tailored to databases

• Can handle graphs of Millions of edges and
vertices

• Working on inexact matching

13

EDBT’06 Tutorial: SC
3/27/2006

Slide 49

A B

C

ab

bc

A B

C

bc

abD
1 2 4 5

7

bd da
6

3

A Bab
1 2

B Cbc
2 3

B D
2 4

bd

AD
4 5

da

A Bab
5 6

CB bc
76

1-edge
instances

Input Graph

Overview (Contd.)

EDBT’06 Tutorial: SC
3/27/2006

Slide 50

1 edge pruning (join)

A Bab 2

Substructures
After pruning

B Cbc 2

A Bab
1 2

B Cbc
2 3

B D
2 4

bd

AD
4 5

da

A Bab
5 6

CB bc
76

1 edge
instances

A Bab 2

B Cbc 2

B Dbd 1

AD da 1

Frequent
Substructures

(count)

Group by

A Bab
1 2

A Bab
5 6

B Cbc
2 3

CB bc
76

Instances of
Un-pruned
substructures
retained

EDBT’06 Tutorial: SC
3/27/2006

Slide 51

Generating 2 edge substructures

Instances of frequent
substructures

BA ab bc C
1 2 3

BA ab bc C
5 6 7

A Bab
1 2

B Cbc
2 3

BA ab
5 6

CB bc
76

1 edge
instances

A Bab
1 2

A Bab
5 6

B Cbc
2 3

CB bc
76

1-edge
instances

BA ab bc C
1 2 3

BA ab bc C
5 6 7

2-edge
instances

2BA ab bc C

Frequent 2-edge
Substructures (count)

Group by

EDBT’06 Tutorial: SC
3/27/2006

Slide 52

With cycles and multiple edges
Dataset Instances
50V100E 4
250V500E 15
500V1000E 30
1KV2KE 60
2.5KV5KE 150
5KV10KE 300
7.5KV15KE 450
10KV20KE 600
15KV30KE 900
20KV40KE 1200
50KV100KE 3000
100KV200KE 6000
200KV400KE 12000
400KV800KE 24000
800KV1600KE 48000

14

EDBT’06 Tutorial: SC
3/27/2006

Slide 53

With cycles and multiple edges

• Subdue crossover – 2.5KV5KE

Beam 4, MaxSize 5, Iterations 1

0.01
0.1

1
10

100
1000

10000
100000

1000000

50V100E

250V
500

E

500V
100

0E

1K
V2K

E

2.5
KV5K

E

5K
V10K

E

7.5
KV15K

E

10KV20KE

15KV30KE

20KV40KE

50KV100K
E

100K
V200K

E

200K
V400K

E

400K
V800K

E

800K
V1600

KE

Dataset

Ti
m

e
in

 s
ec

on
ds

Subdue HDB-Subdue

EDBT’06 Tutorial: SC
3/27/2006

Slide 54

HdbSubdue

• Graph representation using relations
• Joins used for iterative generation of larger

substructures
• Pseudo duplicate elimination involves a

number of joins
• DMDL is used to identify the best

substructure (count/frequency can be used
as well)

EDBT’06 Tutorial: SC
3/27/2006

Slide 55

3

A B

C

ab

bc

A B

C

bc

ab
D

1 2 4 5

7

bd da
6

Representation

8

C

ac ac

ac

EDBT’06 Tutorial: SC
3/27/2006

Slide 56

A B

C

bc

ab
5

7

6

ac

A B

C

bc

ab
1

3

2

ac

3

A B

C

ab

bc

1 2
bd

8

C

ac

Isomorphic instance Count 3Isomorphic instance Count 2

3 edge instances

15

EDBT’06 Tutorial: SC
3/27/2006

Slide 57

A B

C

bc

ab
5

7

6

ac

A B

C

bc

ab
1

3

2

ac

3

A B

C

ab

bc

1 2

8

C

ac

3

3

3

T2

1

1

1

F3

2

2

2

T1

2

2

2

F2

81acbcabCCBA8321

-

-

V4L

0

0

V4

ac

ac

E3

1

1

F1

C

C

V3L

ab

ab

E1

bc

bc

E2

B

B

V2L

7

3

V3

3A65

3

T3

A

V1L

21

V2V1

Count 3

Relational representation

HDB instance_3 (instances of size 3)

EDBT’06 Tutorial: SC
3/27/2006

Slide 58

AGM

• Apriori-based Graph Mining
Combines adjacency matrix with the
efficient level-wise search of the frequent
canonical matrix code
Adjacency matrix elements are numbers
(e.g., edge numbers) instead of being
binary
Support and confidence are redefined for
the graph domain

EDBT’06 Tutorial: SC
3/27/2006

Slide 59

AGM (Contd.)

• The subset property is preserved by using
normal forms of adjacency matrix

• If the adjacency matrix generated is not in
the normal form, it has to be transformed
to the normal form.

• Support counting is done on the database
as in an apriori algorithm.

• An efficient indexing is used for this
purpose

EDBT’06 Tutorial: SC
3/27/2006

Slide 60

FSG

Aims at discovering interesting sub-
graph(s) that appear frequently over the
entire set of graphs in contrast to
discovering a interesting sub-graph(s) that
appear within a single graph (or a forest)
as in Subdue/HDB-Subdue
It is designed along the lines of Apriori
algorithm.

16

EDBT’06 Tutorial: SC
3/27/2006

Slide 61

Problem Definition

• discovering all connected subgraphs that
occur frequently over the entire set of
graphs.

Subdue: best n are output (n is user
defined)

• vertex : correspond to an entity
• edge : correspond to a relation between

two entities

EDBT’06 Tutorial: SC
3/27/2006

Slide 62

Example of Frequent sub-graph discovery

EDBT’06 Tutorial: SC
3/27/2006

Slide 63

Key Features Of FSG
Uses sparse graph representation that minimizes

storage and computation
(Subdue does the same)

• Increases the size of frequent subgraphs by
adding one edge at a time (apriori)

(Subdue does the same)
• Uses canonical labeling to uniquely identify

subgraphs
(Subdue uses bounded subgraph-isomorphism)

• ONLY undirected edges; I believe it cannot
handle multiple edges and cycles

Unlike subdue

EDBT’06 Tutorial: SC
3/27/2006

Slide 64

Canonical Labeling

“000000 1 01 011 0001 00010” “aaa z xy”

• Different orderings of the vertices will give rise to different codes
• Try every possible permutation of the vertices and choose the ordering which

gives lexicographically the largest, or the smallest code.
• O(|V|!)

17

EDBT’06 Tutorial: SC
3/27/2006

Slide 65

Key Features Of FSG

• Introduces various optimizations for
candidate generation and frequency
counting

(Subdue has pruning, search space
minimum detection etc.)

EDBT’06 Tutorial: SC
3/27/2006

Slide 66

FSG Components

• Candidate Generation
• Graph Isomorphism

• Interestingness metric
Frequency is considered to be an
interestingness metric i.e the frequent sub-
graph that appears in most graph
databases is considered interesting

EDBT’06 Tutorial: SC
3/27/2006

Slide 67

Graph Isomorphism

• FSG uses canonical labeling for isomorphism.
• Canonical labeling assigns a unique code for

each substructure and two substructures have
the same canonical code only if the substructures
are isomorphic.

• Canonical labeling is an easier and faster way of
finding the isomorphic substructures, but it
suffers from the fact that canonical labeling
cannot be used for graphs that have multiple
edges between the vertices.

EDBT’06 Tutorial: SC
3/27/2006

Slide 68

Key Aspects

• interested in subgraphs that are connected
• allow the graphs to be labeled
• both vertices and edges may have labels

associated with them which are not
required to be unique.

18

EDBT’06 Tutorial: SC
3/27/2006

Slide 69

FSG
• Input to FSG

Set of graphs (transactions)
Labeled edges and vertices
Edges are undirected
No inexact match

Subdue can take a single connected graph or a
forest of graphs
Edges can be directed or undirected
Both edges and vertices can have labels
Multiple edges between nodes is supported
Cycles are supported

EDBT’06 Tutorial: SC
3/27/2006

Slide 70

Definitions
• The canonical label of a graph G = (V;E), cl(G) :

unique code (e.g., string) that is invariant on the
ordering of the vertices and edges in the graph.

• Two graphs will have the same canonical label if
they are isomorphic.

• Canonical labels are useful to (i) compare two
graphs (ii) establish a complete ordering of a set
of graphs in a unique and deterministic way,
regardless of the original vertex and edge
ordering.

EDBT’06 Tutorial: SC
3/27/2006

Slide 71

FSG

• Frequent subgraphs are found based on
the set covering approach (frequency)

In Subdue subgraphs are found based on
MDL (the graph that minimizes the
description length of the input)

• User defined support threshold – minimum
percentage of graphs in which a subgraph
has to be found

EDBT’06 Tutorial: SC
3/27/2006

Slide 72

Candidate generation

• Candidates are the substructures which would be
searched and counted in the given graph databases

• create a set of candidates of size k+1, given
frequent k-subgraphs.

• by joining two frequent k-subgraphs (using
downward closure property)

• must contain the same (k-1)-subgraph (common
core)

• Self-join required for unlabeled graphs
• Subdue extends subgraph in every possible way via

an edge and a vertex

19

EDBT’06 Tutorial: SC
3/27/2006

Slide 73

Joining of two k-subgraphs

EDBT’06 Tutorial: SC
3/27/2006

Slide 74

Key computational steps in
candidate generation

• core identification

• Joining

• using the downward closure property

EDBT’06 Tutorial: SC
3/27/2006

Slide 75

Core Identification

• for each frequent k-subgraph, store the canonical labels of its
frequent (k-1)-subgraphs

• Cores are the intersection of these lists.
• complexity : quadratic on |F(k)|

• inverted indexing scheme
• for each frequent (k-1)subgraph, maintain a list of child k-

subgraphs.
• form every possible pair from the child list of every (k-1)

frequent subgraph.
• complexity of finding an appropriate pair of subgraphs:

square of the number of child k-subgraphs (which is much
smaller)

EDBT’06 Tutorial: SC
3/27/2006

Slide 76

Speeding automorphism computation

• cache previous automorphisms associated
with each core

• look them up instead of performing the
same automorphism computation again.

• saved list of automorphisms is discarded
once Ck+1 has been generated.

20

EDBT’06 Tutorial: SC
3/27/2006

Slide 77

Downward Closure

• uses canonical labeling to substantially
reduce the complexity of the checking
whether or not a candidate pattern
satisfies the downward closure property of
the support condition

EDBT’06 Tutorial: SC
3/27/2006

Slide 78

Canonical labels

• Canonical labels are computed for
subgraphs

• These labels are used for subgraph
comparison (instead of isomorphism)

• A number of optimizations are proposed to
reduce the complexity from O(|V|!)

• But once computed, they can be cached
and used quickly for comparison

EDBT’06 Tutorial: SC
3/27/2006

Slide 79

Canonical Labeling

“000000 1 01 011 0001 00010” “aaa z xy”

• Different orderings of the vertices will give rise to different codes
• Try every possible permutation of the vertices and choose the ordering which

gives lexicographically the largest, or the smallest code.
• O(|V|!)

EDBT’06 Tutorial: SC
3/27/2006

Slide 80

Why canonical labeling?

• use the canonical label repeatedly for
comparison without the recalculation.

• by regarding canonical labels as strings,
we get the total order of graphs.

• sort them in an array
• index by binary search efficiently.

21

EDBT’06 Tutorial: SC
3/27/2006

Slide 81

Canonical label optimizations

• Vertex invariants – do not change across
isomorphism mappings (e.g., degree or
label of a vertex)

• Do not asymptotically change the
computational complexity; in practicce it is
useful

EDBT’06 Tutorial: SC
3/27/2006

Slide 82

Vertex Invariants

• attributes or properties assigned to a vertex
which do not change across isomorphism
mappings.

• partition the vertices into equivalence classes
such that all the vertices assigned to the same
partition have the same values for the vertex
invariants.

• only maximize over those permutations that keep
the vertices in each partition together.

EDBT’06 Tutorial: SC
3/27/2006

Slide 83

Invariants

• degree or label of a vertex

• the labels and degrees of their adjacent
vertices (neighbor list)

• information about their adjacent partitions

EDBT’06 Tutorial: SC
3/27/2006

Slide 84

only 1! * 2!= 2 permutations although the total permutations 4! = 24.

• (l(e); d(v); l(v)) l(e) is the label of the incident edge e, d(v) is degree of
the adjacent vertex v, and l(v) is its vertex label.
• same partition if and only if nl(u) = nl(v)
• reduce from 4! * 2! to 2!.

22

EDBT’06 Tutorial: SC
3/27/2006

Slide 85

Iterative Partitioning

EDBT’06 Tutorial: SC
3/27/2006

Slide 86

Frequency Counting

• for each frequent subgraph, keep a list of
transaction identifiers that support it.

• to compute the frequency of G(k+1), first compute
the intersection of the TID lists of its frequent k-
subgraphs.

• If the size of the intersection is below the support,
G(k+1) is pruned - subgraph isomorphism
computations avoided

• Otherwise use subgraph isomorphism on the set of
transactions in the intersection of the TID lists.

EDBT’06 Tutorial: SC
3/27/2006

Slide 87

FSG vs. Subdue

• No inexact graph matching
• No iterative discovery
• Restricts input in order to be more efficient

Undirected edges only
Set of disconnected graphs

• Optimizations rely on additional space for
increased speed

EDBT’06 Tutorial: SC
3/27/2006

Slide 88

gSpan
• Given a graph dataset, D = {G0,G1,….Gn} and any

subgraph g, the problem of frequent subgraph mining is to
find any subgraph g such that support(g) > minSupport

• Unlike FSG, gSpan discovers frequent substructures
without candidate generation.

• gSpan builds a new lexicographic order among graphs, and
maps each graph to a unique minimum DFS code as its
canonical label. Based on this lexicographic order, gSpan
adopts the depth-first search strategy to mine frequent
connected subgraphs efficiently.

• gSpan discovers all the frequent subgraphs without
candidate generation and false positives pruning. It
combines the growing and checking of frequent subgraphs
into one procedure, thus accelerating the mining process.

23

EDBT’06 Tutorial: SC
3/27/2006

Slide 89

gSpan features:
• In the context of frequent subgraph mining, the Apriori-

like algorithms meet two challenges:
candidate generation: the generation of size (k+1) subgraph
candidates from size k frequent subgraphs is more
complicated and costly and
pruning false positives: subgraph isomorphism test is an NP
complete problem, thus pruning false positives is costly.

If the entire graph dataset can fit in main memory, gSpan can
be applied directly; otherwise, one can first perform graph-
based data projection and then apply gSpan

• Subgraph isomorphism is achieved using the canonical
labeling techniques, DFS lexicographic order and
minimum DFS code.

EDBT’06 Tutorial: SC
3/27/2006

Slide 90

DFS Code

EDBT’06 Tutorial: SC
3/27/2006

Slide 91

Min DFS Code and Isomorphism
• If we order all DFS codes according to the < order, we can take a

minimum, min(G)
• min(G) is unique
• Two graphs are isomorphic iff min(G) = min(G’)

EDBT’06 Tutorial: SC
3/27/2006

Slide 92

Observations
• gSpan is a main memory algorithm
• Performance is reported for data sets up to only 320 KB
• Running time scales exponentially with large numbers of graph

labels
• gSpan typically needs random access to elements of the graph

database and to its projections

24

EDBT’06 Tutorial: SC
3/27/2006

Slide 93

Conclusions

• Graph mining is a powerful approach
needed by many real-world applications

• There is need for both Subdue class of
mining algorithms and frequent subgraph
class of algorithms

• Scalability is an extremely important issue
• Our approach to using SQL has yielded

very promising scalability results (800K
vertices and 1600K edges)

3/27/2006 94

DMDL
(frequenc

y)

HDBSubdu
e

Graph Mining

Memory limitation

Inexact graph match
With threshold

Frequency

gSpan

Support,
Confidence

FrequencyMDLEvaluation metric

Cycles

Hierarchical reduction

Multiple edges

AGMFSGSubdue

Comparison

3/27/2006 95

References
• D. J. Cook and L. B. Holder,Graph Based Data Mining, IEEE Intelligent Systems, 15(2),

pages 32-41, 2000.
• D. J. Cook and L. B. Holder. Substructure Discovery Using Minimum Description Length

and Background Knowledge. In Journal of Artificial Intelligence Research, Volume 1,
pages 231-255, 1994.

• L. B. Holder, D. J. Cook and S. Djoko. Substructure Discovery in the SUBDUE System. In
Proceedings of the AAAI Workshop on Knowledge Discovery in Databases, pages 169-180,
1994

• L. B. Holder and D. J. Cook. Discovery of Inexact Concepts from Structural Data. In IEEE
Transactions on Knowledge and Data Engineering, Volume 5, Number 6, pages 992-994,
1993

• D. J. Cook, L. B. Holder, and S. Djoko. Scalable Discovery of Informative Structural
Concepts Using Domain Knowledge. In IEEE Expert, Volume 11, Number 5, pages 59-68,
1996.

• Rakesh Agrawal, Tomasz Imielinski, Arun N. Swami: Mining Association Rules between
Sets of Items in Large Databases. SIGMOID Conference 1993: 207-216

• Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo: Discovery of frequent episodes
in event sequences. Report C-1997-15, Department of Computer Science, University of
Helsinki, February 1997. 45 pages.

• Diane J. Cook, Edwin O. Heierman, III Automating Device Interactions by Discovering
Regularly Occurring Episodes. Knowledge Discovery in Databases 2003.

• Michihiro Kuramochi and George Karypis, Discovering Frequent Geometric Subgraphs
Proceedings of IEEE 2002 International Conference on Data Mining (ICDM '02), 2002

3/27/2006 96

References
• Michihiro Kuramochi and George Karypis, Frequent Subgraph Discovery Proceedings of

IEEE 2001 International Conference on Data Mining (ICDM '01), 2001.
• X. Yan and J. Han, gspan: graph-based substructure pattern mining," Proceedings of the

IEEE International Conference on Data Mining, 2002
• http://www.cse.iitd.ernet.in/~csu01124/btp/specifications.htm
• H. Bunke and G. Allerman, \Inexact graph match for structural pattern recognition,"

Pattern Recognition Letters, pp. 245{253, 1983.
• Fortin., S., The graph isomorphism problem. 1996, Department of Computing Science,

University of Alberta.
• A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent

substructures from graph data. In PKDD'00, pages 13.23, 2000.
• J. Huan, W. Wang, J. Prins, and J. Yang, “SPIN: Mining Maximal Frequent Subgraphs

from Graph Databases, KDD 2005, Seattle, USA.
• X. Yan and J. Han. Closegraph: Mining closed frequent graph patterns. KDD’03, 2003.
• Mr. Srihari Padmanabhan, “Relational Database Approach to Graph Mining and Hierarchical

Reduction”, Fall 2005 http://itlab.uta.edu/itlabweb/students/sharma/theses/pad05ms.pdf
• Mr. Sunit Sreshta, “SQL_Based Approach to Significant Interval Discovery in Time-Series

Data”, Summer 2005 http://itlab.uta.edu/itlabweb/students/sharma/theses/shr05ms.pdf
• R. Balachandran, “Relational Approach to Modeling and Implementing Subtle Aspects of Graph

Mining”, Fall 2003. http://www.cse.uta.edu/Research/Publications/Downloads/CSE-2003-41.pdf
• M. Aery and S. Chakravarthy, “eMailSift: Email Classification Based on Structure and Content”,

in the Proc. of ICDM (international Conference on Data Mining), Houston, Nov 2005.

