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Motivation

Fraud division, some large telephone company:

“How do we find these guys? There are 10 billion 
records on 10 million customers in the main 
database. With all this information we have 
about our customers and all the calls they make, 
can’t you just ask the database to figure out 
which lines have been set-up temporarily and 
exhibited similar calling patterns in the same 
time periods? The information is in there, I just 
know it …”
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Problem
• “Find-similar” problem just described is hard

e.g., “What products need to be improved?”
e.g., “Which books won’t be checked out and can be 
taken off the shelves?”

Why?
• Massive amounts of data 

More and more online data stores (e.g., Web, click 
streams, corporate databases, etc.)

• No easy way to describe what to look for
• Traditional, interactive approaches fail

Size of data, different purposes
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Data Mining

• Data Mining (DM) is part of the knowledge 
discovery process carried out to extract valid 
patterns and relationships in very large data sets

• Regarded as unsupervised learning from basic 
facts (axioms) and data

• Roots in AI and  statistics
Uses techniques from machine learning, pattern 
recognition, statistics, database, visualization, etc.
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Data Mining has come about due to 

• Convergence of 
multiple 
technologies

DM

Increase in
Computing 
Power

Improved data
management

Application
Of statistical/
Machine learning
algorithms
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Data Mining is NOT …

• Data warehousing
• Ad hoc query/reporting
• Online Analytical Processing (OLAP)
• Data Visualization
• Agents/mediators,
• Pervasive computing, …
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What DM will NOT do !

• Substitute for human intuition and 
discovery

• I don’t think a DM system will (ever?) 
discover  e = mc2

• I don’t think DM will (ever?) discover         
PV = RT

• I don’t think DM will (ever?) discover 
gravity, Newton’s law’s of motion

• It may discover new black holes !
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Need for  Graph Mining
• Association Rule Mining, decision trees… mine transactional 

data. 
• Graph based mining techniques are used for mining data that are 

structural in nature (chemical compounds, complex proteins, 
VLSI circuits, social networks, …) as mapping them to other 
representations is not possible or will lead to the loss of structural 
information

• Significant work in the area includes the Subdue substructure 
discovery algorithm (Cook & Holder), HdbSubdue (chakrvarthy, 
Beera, Padmanabhan), the apriori graph mining (AGM) 
(Inokuchi, Washio, and Motoda), the frequent subgraph (FSG) 
technique (Karypis & Kuramochi), and the gSpan approach (J. 
Han) (also SPIN (Huan, Wang, Prins, and Yang))
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Application:

To determine which amino 
acid chain dominates in a 
particular protein

Protein

Protein represented 
using Graph

O

N

H

NH

CN

C

COCO
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Application Domains
• Chemical Reaction chains
• CAD Circuit Analysis
• Social Networks
• Credit Domains
• Web analysis
• Games (Chess, Tic Tac toe)
• Program Source Code analysis
• Chinese Character data bases
• Geology
• Aviation Data Bases
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Graph Based Data Mining

A Graph representation of the database is intuitive and an obvious 
choice.
Graphs can be used to accurately model and represent scientific 
data sets. Graphs are suitable for capturing arbitrary relations
between the various objects.
Data Instance              Graph Instance
Object Vertex
Object's Attributes Vertex Label
Relation Between Two Objects Edge
Type Of Relation Edge Label

• Graph based data mining aims at discovering 
interesting and repetitive patterns within these 
structural representations of data. 
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Graph Mining Overview
• A substructure is a connected subgraph; 

need to differentiate between substructures 
and substructure instances 

• A connected subgraph is a subgraph of the 
original graph where there is a path between 
any two vertices

• A  subgraph Gs = (Vs, Es) of G = (V, E) is 
induced if Es contains all the edges of E that 
connect vertices in Vs

• Directed and undirected edges are needed; 
multiple edges between two nodes need to 
be accommodated; cycles need to be 
handled
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Graph Mining: Complexity
• Enumerating all the substructures of a 

graph has exponential complexity
• Subgraph isomorphism is NP complete
• Generating canonical labels is O(|V|!), 

where V is the number of vertices
• All approaches have to deal with the 

above in order to be able to work on 
large data sets

• Different approaches do it differently; 
scalability depends on its and the use of 
buffers
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Subdue
• One of the earliest work in Graph based data 

mining
Uses sparse adjacency matrix for graph 
representation

• Substructures are evaluated using a metric 
called Minimum Description Length principle 
based on adjacency matrices

• Capable of matching two graphs, differing by 
the number of vertices  specified by the 
threshold parameter, inexactly

• Performs hierarchical clustering by 
compressing the input graph with best 
substructure in each iteration
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Subdue

• Capable of supervised discovery using  
positive and negative    examples

• Available main memory limits the largest 
dataset that can be handled

• An SQL-based subdue addresses 
scalability

• A computationally constrained beam-
search is used for subgraph generation

• A branch and bound algorithm is used for 
inexact match
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AGM

• First to propose apriori-type algorithm for 
graph mining

• Detects frequent induced subgraphs for a 
given support

• Follows apriori algorithm
• Not much optimization; hence 

performance is not that good and is not 
scalable!
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FSG

• FSG is used for frequent subgraph discovery
• Given a graph dataset G = {G1,G2,G3, · · ·}, it discovers 

all connected subgraphs that are found in at least the 
support threshold percent of the input graphs

• Uses a (sparse) adjacency matrix for graph representation
• A canonical label is generated by flattening the adjacency 

matrix of a graph (optimization)
• At each iteration FSG generates candidate subgraphs by 

adding one edge to the previous iteration’s frequent 
subgraph (optimization)

• Graph isomorphism is checked by comparing canonical 
labels (optimization)
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gSpan

• Avoids candidate generation
• Builds a new lexicographical ordering 

among graphs and maps each graph to a 
unique minimum DFS code as its 
canonical label

• Seems to outperform FSG
• Amenable to parallelization
• Does not handle cycles and multiple edges
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Subdue Example

object

triangle

R1

C1
T1
S1

T2
S2

T3
S3

T4
S4

Input Database Substructure S1
(graph form)

Compressed Database

R1

C1
object

squareon

shape

shape S1S1S1 S1S1S1 S1S1S1

S1S1S1
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Subdue Substructure Discovery System

• Subdue Substructure discovery system is a graph based data 
mining system that discovers interesting and repetitive patterns
within graph representations of data. 

• It accepts as input a forest and identifies the substructure that best 
compresses the input graph using the minimum description length 
(MDL) principle. 

• It is capable of identifying both exact and inexact (isomorphic)
substructures within a graph

• It uses a branch and bound algorithm for inexact matches 
(substructures that vary slightly in their edge and vertex 
descriptions). 
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Subdue
• Unsupervised learning

Subdue finds the most prevalent substructure from 
a set of unclassified input graphs

• Supervised learning
Subdue finds discriminating patterns from a set of 
classified (positive – G+ and negative – G-
graphs)

• Hierarchical conceptual clustering
Compresses G with S and iterate

• Incremental Subdue 
Uses unsupervised learning
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Subdue
• Inferring graph grammars and graph 

primitives from examples 

• Applications 
Data mining
Pattern recognition
Machine learning
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Graph Representation

Subdue represents data as labeled graph.
Vertices represent objects or attributes
Edges represent relationships between objects
Input: Labeled graph
Output: Discovered patterns and instances and 
their compression.

A substructure is a connected subgraph
Graph isomorphism is used to identify similar
substructures



7

EDBT’06 Tutorial: SC
3/27/2006

Slide 25

MDL Principle
• Theory to minimize description length (DL) 

of data; information theoretic approach
• Has been shown to be good across 

domains
• Evaluates substructures based on their 

ability to compress DL of graph 
• Description length =DL(S) + DL(G/S)

Depends upon the representation
Substructure that best compresses the 
original is chosen
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MDL Principle (cont.)
• Minimizes description length (DL) of data

• Substructures are evaluated based on their ability to compress 
the DL of the entire graph

• MDL = description length of the compressed graph / 
description length of the original graph

• DL(G) – Description length of the input graph
• DL(S) – Description length of sub graph
• DL(G|S) – Description length of the graph given the sub graph

DL(G)
MDL = 

DL(S) + DL(G|S)
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Example: Subdue
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Input
• The input is a file, with all the vertex labels, vertex 

numbers, edges (using vertex numbers) and the 
edge directions

v 1 A
v 2 B
v 3 C
v 4 D
d 1 2 ab
d 1 3 ac
d 2 4 bd
d 4 3 dc

• ‘d’ stands for a directed edge and ‘u’ stands for 
undirected. ‘e’ stands for directed unless specified 
as –undirected at the command prompt.
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Subdue Approach
• Create a substructure for each unique vertex label
• Expand each substructure by adding an edge (and 

may be a vertex)
• Maintain beam number of substructures for 

expansion
• Halting conditions

Discovered substructures > limit
List maintaining the substructures to be expanded 
becomes empty
Max size of substructure to be discovered is 
reached
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Output

• Output
Substructure: MDL value = 1.21789, instances = 2

Graph (4v,4e):
v 1 A
v 2 C
v 3 B
v 4 D
d 1 2 ac
d 1 3 ab
d 4 2 dc
d 3 4 bd
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Subdue Parameters

• Threshold determines the amount of variation permissible in 
the vertex and edge descriptions during inexact graph match.

• Nsubs determines the maximum number of substructures 
that are returned as the set of best substructures

• Beam determines the maximum number of substructures that 
are retained for expansion in the next iteration of the 
discovery algorithm

• Minsize constrains the size of substructures returned as best 
to be equal to or more than the specified parameter value 
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Algorithm

• SUBDUE(G, limit, beam)
S = vertices(G)
While (computation < limit) and (S <> {})

• Order S from best to worst using MDL and background 
knowledge rules

• S = first beam structures of S
• b = first(S)
• E = (b extended by one edge in all possible ways}
• S = S U E

Return the substructure that produces the best 
compression ratio
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Algorithm (Contd.)

1. Create substructure for each unique vertex 
label

circle

rectangle

left

triangle

square
on

on

triangle

square
on

on
triangle

square
on

on
triangle

square
on

onleft

left left

left

Substructures:

triangle (4), square (4),
circle (1), rectangle (1)

R1

C1

T1

S1

T2

S2

T3

S3

T4

S4
object

triangle

object

squareo
n

shape

shape

R
1

C1

S1S1S1 S1S1S1 S1S1S1

S1S1S1
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Algorithm (Contd.)
2. Expand best substructure by an edge or 

edge+neighboring vertex

circle

rectangle

left

triangle

square
on

on

triangle

square
on

on
triangle

square
on

on
triangle

square
on

onleft

left left

left

Substructures:
triangle

square
on

circleleftsquare

rectangle

square
on

rectangle

triangle
on

R1

C1

T1

S1

T2

S2

T3

S3

T4

S4
object

triangle

object

squareo
n

shape

shape
R
1

C1

S1S1S1 S1S1S1 S1S1S1

S1S1S1
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Algorithm (cont.)

3. Keep only best substructures on queue 
(specified by beam width)

4. Terminate when queue is empty or 
#discovered substructures >= limit

5. Compress graph and repeat to generate 
hierarchical description

• Constrained to run in polynomial time

R1

C1

T1

S1

T2

S2

T3

S3

T4

S4
object

triangle

object

squareo
n

shape

shape
R
1

C1

S1S1S1 S1S1S1 S1S1S1

S1S1S1
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Graph Match

• Exact Graph match

• Inexact Graph match

Exact graph match is likely to be restrictive 
for real life  applications.
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Inexact Graph Match

• Some variations may occur between 
instances

• Want to abstract over minor differences
• Difference = cost of transforming one 

graph to make it isomorphic to another
• Match if cost/size < threshold
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Inexact Graph Match

• Minimum graph edit distance

cumulative cost of graph changes required to 
transform the first graph into a graph isomorphic 
to the second graph.

• Uniform Cost Search
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Graph 1

Graph 2

• Exact graph match is NP complete
• Bunke and Allerman’s approach

Each distortion is assigned a cost.
A distortion is a basic transformation such as deletion, insertion
of vertices and edges (and their labels)

Fuzzy graph match is a mapping f: N1 N2 U {λ}, N1 and N2 are sets  
of nodes of graph 1 and graph 2. A node v є N1 that is mapped to λ is  
deleted 

• If matchcost <= threshold then two graphs are said to be isomorphic
• Employing computational constraints such as bound on the number of   

substructures considered makes subdue run in polynomial time

Mapping : 1 1, 2 2, 3 3, 4 null
1) Delete Edge 3 4 (cost = 2) edge + label
2) Delete vertex 4       (cost = 2) node + label
3) Substitute vertex label C by D for vertex 3  
(cost = 1)

Total cost = 5 for this mapping
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Inexact Graph Match

1 2
A Ba

b

5

3 4
B Ab

aa b

B∅

(1,3)  1 (1,4)  0 (1,5)  1 (1,λ)  1

(2,4)
7

(2,5)
6

(2,λ)
10

(2,3)
3

(2,5)
6

(2,λ)
9

(2,3)
7

(2,4)
7

(2,λ)
10

(2,3)
9

(2,4)
10

(2,5)
9

(2,λ)
11

Least-cost match is 
{(1,4), (2,3)}
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Hierarchical Reduction
• Input is a labeled graph
• A substructure is connected subgraph
• A substructure instance is a subgraph isomorphic to substructure definition
• Multiple iterations can create hierarchy

S1

S1

S1

S1

S1

S2

S2 S2

EDBT’06 Tutorial: SC
3/27/2006

Slide 42

Document Classification Example

 

 

Control flow in the InfoSift classification system
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Variants of Subdue

• Concept learner using positive and 
negative examples

• Hierarchical reduction
• Similarity detection in social networks
• Database approach to some of the above
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Why Database Mining?

• Proliferation of relational DW and the need to mine 
them

• Data mining must ‘`co-exist’’ with OLAP and other 
decision-support applications

• DM will be a sub-process in next generation 
Business Intelligence (BI) Systems

• Leverage the RDBMS technology for mining
• Provide an integrated decision-support 

environment  for analysts
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Data Mining Vs. Database Mining
• Data mining refers to main memory algorithms for 

mining
+ Can use arbitrary data structures
+ Can optimize algorithms with proper representation 

(hash tree for example)
- Limited memory, add buffer management
- Data has to be siphoned out of its location (mostly a 

DBMS or a Data Warehouse)
- Works well only for small data sizes (no scalability)
- Every time data is added to the DB, the process has to 

be repeated
Solution? Database Mining – Bringing algorithms 

to data instead of taking data to algorithms
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SQL-based Mining: Advantages

• Leverage 2+ decades of  DBMS R&D
• No specialized data structures and 

memory management
• Fast development of mining algorithms
• SMP parallelism for free for parallel 

database engines
• Data is not replicated outside of DBMS
• SQL may be extended to include ad hoc

mining queries
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Scalability Issues

• Subdue is a main memory algorithm.
• Good performance for small data sizes
• Entire graph is constructed before applying 

the mining algorithm
• Takes a very long time to initialize for 1600K 

edges and 800K vertices graph
• Scalability is an issue
• Performs hierarchical reduction of input
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SQL-Based Graph Mining

• We have mapped the Subdue algorithm using 
SQL (exact graph match)

Handles multiple edges
Handles cycles
Performs Hierarchical reduction
Have developed DMDL tailored to databases

• Can handle graphs of Millions of edges and 
vertices

• Working on inexact matching
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A B

C

ab

bc

A B

C

bc

abD
1 2 4 5

7

bd da
6

3

A Bab
1 2

B Cbc
2 3

B D
2 4

bd

AD
4 5

da

A Bab
5 6

CB bc
76

1-edge 
instances

Input Graph

Overview (Contd.)
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1 edge pruning (join)

A Bab 2

Substructures
After pruning

B Cbc 2

A Bab
1 2

B Cbc
2 3

B D
2 4

bd

AD
4 5

da

A Bab
5 6

CB bc
76

1 edge 
instances

A Bab 2

B Cbc 2

B Dbd 1

AD da 1

Frequent
Substructures

(count)

Group by

A Bab
1 2

A Bab
5 6

B Cbc
2 3

CB bc
76

Instances of 
Un-pruned 
substructures 
retained
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Generating 2 edge substructures

Instances of frequent 
substructures

BA ab bc C
1 2 3

BA ab bc C
5 6 7

A Bab
1 2

B Cbc
2 3

BA ab
5 6

CB bc
76

1 edge 
instances

A Bab
1 2

A Bab
5 6

B Cbc
2 3

CB bc
76

1-edge 
instances

BA ab bc C
1 2 3

BA ab bc C
5 6 7

2-edge 
instances

2BA ab bc C

Frequent 2-edge 
Substructures (count)

Group by
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With cycles and multiple edges
Dataset Instances
50V100E 4
250V500E 15
500V1000E 30
1KV2KE 60
2.5KV5KE 150
5KV10KE 300
7.5KV15KE 450
10KV20KE 600
15KV30KE 900
20KV40KE 1200
50KV100KE 3000
100KV200KE 6000
200KV400KE 12000
400KV800KE 24000
800KV1600KE 48000
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With cycles and multiple edges

• Subdue crossover – 2.5KV5KE

Beam 4, MaxSize 5, Iterations 1

0.01
0.1

1
10

100
1000

10000
100000

1000000

50V100E

250V
500

E

500V
100

0E

1K
V2K

E

2.5
KV5K

E

5K
V10K

E

7.5
KV15K

E

10KV20KE

15KV30KE

20KV40KE

50KV100K
E

100K
V200K

E

200K
V400K

E

400K
V800K

E

800K
V1600

KE

Dataset

Ti
m

e 
in

 s
ec

on
ds

Subdue HDB-Subdue
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HdbSubdue

• Graph representation using relations
• Joins used for iterative generation of larger 

substructures
• Pseudo duplicate elimination involves a 

number of joins
• DMDL is used to identify the best 

substructure (count/frequency can be used 
as well)
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3

A B

C

ab

bc

A B

C

bc

ab
D

1 2 4 5

7

bd da
6

Representation

8

C

ac ac

ac

EDBT’06 Tutorial: SC
3/27/2006

Slide 56

A B

C

bc

ab
5

7

6

ac

A B

C

bc

ab
1

3

2

ac

3

A B

C

ab

bc

1 2
bd

8

C

ac

Isomorphic instance Count 3Isomorphic instance Count 2

3 edge instances



15

EDBT’06 Tutorial: SC
3/27/2006

Slide 57

A B

C

bc

ab
5

7

6

ac

A B

C

bc

ab
1

3

2

ac

3

A B

C

ab

bc

1 2

8

C

ac

3

3

3

T2

1

1

1

F3

2

2

2

T1

2

2

2

F2

81acbcabCCBA8321

-

-

V4L

0

0

V4

ac

ac

E3

1

1

F1

C

C

V3L

ab

ab

E1

bc

bc

E2

B

B

V2L

7

3

V3

3A65

3

T3

A

V1L

21

V2V1

Count 3

Relational representation

HDB instance_3 (instances of size 3)
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AGM

• Apriori-based Graph Mining
Combines adjacency matrix with the 
efficient level-wise search of the frequent 
canonical matrix code
Adjacency matrix elements are numbers 
(e.g., edge numbers) instead of being 
binary
Support and confidence are redefined for 
the graph domain
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AGM (Contd.)

• The subset property is preserved by using 
normal forms of adjacency matrix

• If the adjacency matrix generated is not in 
the normal form, it has to be transformed 
to the normal form.

• Support counting is done on the database 
as in an apriori algorithm.

• An efficient indexing is used for this 
purpose
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FSG

Aims at discovering interesting sub-
graph(s) that appear frequently over the 
entire set of graphs in contrast to 
discovering a interesting sub-graph(s) that 
appear within a single graph (or a forest) 
as in Subdue/HDB-Subdue
It is designed along the lines of Apriori 
algorithm. 
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Problem Definition

• discovering all connected subgraphs that 
occur frequently over the entire set of 
graphs.

Subdue: best n are output (n is user 
defined)

• vertex : correspond to an entity
• edge : correspond to a relation between 

two entities
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Example of Frequent sub-graph discovery

EDBT’06 Tutorial: SC
3/27/2006

Slide 63

Key Features Of FSG
Uses sparse graph representation that minimizes 

storage and computation
(Subdue does the same)

• Increases the size of frequent subgraphs by 
adding one edge at a time (apriori)

(Subdue does the same)
• Uses canonical labeling to uniquely identify 

subgraphs
(Subdue uses bounded subgraph-isomorphism)

• ONLY undirected edges; I believe it cannot 
handle multiple edges and cycles

Unlike subdue
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Canonical Labeling

“000000 1 01 011 0001 00010” “aaa z xy”

• Different orderings of the vertices will give rise to different codes
• Try every possible permutation of the vertices and choose the ordering which 

gives lexicographically the largest, or the smallest code.
• O(|V|!)
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Key Features Of FSG

• Introduces various optimizations for 
candidate generation and frequency 
counting

(Subdue has pruning, search space 
minimum detection etc.)
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FSG Components

• Candidate Generation
• Graph Isomorphism

• Interestingness metric
Frequency is considered to be an 
interestingness metric i.e the frequent sub-
graph that appears in most graph 
databases is considered interesting
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Graph Isomorphism

• FSG uses canonical labeling for isomorphism. 
• Canonical labeling assigns a unique code for 

each substructure and two substructures have 
the same canonical code only if the substructures 
are isomorphic.

• Canonical labeling is an easier and faster way of 
finding the isomorphic substructures, but it 
suffers from the fact that canonical labeling 
cannot be used for graphs that have multiple 
edges between the vertices. 
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Key Aspects

• interested in subgraphs that are connected
• allow the graphs to be labeled
• both vertices and edges may have labels 

associated with them which are not
required to be unique.
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FSG
• Input to FSG

Set of graphs (transactions)
Labeled edges and vertices
Edges are undirected
No inexact match

Subdue can take a single connected graph or a 
forest of graphs
Edges can be directed or undirected
Both edges and vertices can have labels
Multiple edges between nodes is supported
Cycles are supported
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Definitions
• The canonical label of a graph G = (V;E), cl(G) : 

unique code (e.g., string) that is invariant on the 
ordering of the vertices and edges in the graph.

• Two graphs will have the same canonical label if 
they are isomorphic.

• Canonical labels are useful to (i) compare two 
graphs (ii) establish a complete ordering of a set 
of graphs in a unique and deterministic way, 
regardless of the original vertex and edge 
ordering.
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FSG

• Frequent subgraphs are found based on 
the set covering approach (frequency)

In Subdue subgraphs are found based on 
MDL (the graph that minimizes the 
description length of the input)

• User defined support threshold – minimum 
percentage of graphs in which a subgraph 
has to be found
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Candidate generation

• Candidates are the substructures which would be 
searched and counted in the given graph databases

• create a set of candidates of size k+1, given 
frequent k-subgraphs. 

• by joining two frequent k-subgraphs (using 
downward closure property)

• must contain the same (k-1)-subgraph (common 
core)

• Self-join required for unlabeled graphs
• Subdue extends subgraph in every possible way via 

an edge and a vertex
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Joining of two k-subgraphs
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Key computational steps in 
candidate generation

• core identification

• Joining

• using the downward closure property 
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Core Identification

• for each frequent k-subgraph, store the canonical labels of its 
frequent (k-1)-subgraphs

• Cores are the intersection of these lists. 
• complexity : quadratic on |F(k)|

• inverted indexing scheme
• for each frequent (k-1)subgraph, maintain a list of child k-

subgraphs. 
• form every possible pair from the child list of every (k-1) 

frequent subgraph.
• complexity of finding an appropriate pair of subgraphs: 

square of the number of child k-subgraphs (which is much 
smaller)
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Speeding automorphism computation

• cache previous automorphisms associated 
with each core 

• look them up instead of performing the 
same automorphism computation again.

• saved list of automorphisms is discarded 
once Ck+1 has been generated.
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Downward Closure

• uses canonical labeling to substantially 
reduce the complexity of the checking 
whether or not a candidate pattern 
satisfies the downward closure property of 
the support condition
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Canonical labels

• Canonical labels are computed for 
subgraphs

• These labels are used for subgraph 
comparison (instead of isomorphism)

• A number of optimizations are proposed to 
reduce the complexity from O(|V|!) 

• But once computed, they can be cached 
and used quickly for comparison
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Canonical Labeling

“000000 1 01 011 0001 00010” “aaa z xy”

• Different orderings of the vertices will give rise to different codes 
• Try every possible permutation of the vertices and choose the ordering which 

gives lexicographically the largest, or the smallest code.
• O(|V|!)
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Why canonical labeling?

• use the canonical label repeatedly for 
comparison without the recalculation. 

• by regarding canonical labels as strings, 
we get the total order of graphs. 

• sort them in an array 
• index by binary search efficiently.
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Canonical label optimizations

• Vertex invariants – do not change across 
isomorphism mappings (e.g., degree or 
label of a vertex) 

• Do not asymptotically change the 
computational complexity; in practicce it is 
useful
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Vertex Invariants

• attributes or properties assigned to a vertex 
which do not change across isomorphism 
mappings.

• partition the vertices into equivalence classes
such that all the vertices assigned to the same 
partition have the same values for the vertex 
invariants.

• only maximize over those permutations that keep 
the vertices in each partition together.
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Invariants

• degree or label of a vertex

• the labels and degrees of their adjacent 
vertices (neighbor list)

• information about their adjacent partitions

EDBT’06 Tutorial: SC
3/27/2006

Slide 84

only 1! * 2!= 2 permutations although the total permutations 4! = 24.

• (l(e); d(v); l(v)) l(e) is the label of the incident edge e, d(v) is degree of    
the adjacent vertex v, and l(v) is its vertex label.
• same partition if and only if nl(u) = nl(v)
• reduce from 4! * 2! to 2!.
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Iterative Partitioning
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Frequency Counting

• for each frequent subgraph, keep a list of 
transaction identifiers that support it.

• to compute the frequency of G(k+1), first compute 
the intersection of the TID lists of its frequent k-
subgraphs.

• If the size of the intersection is below the support, 
G(k+1) is pruned - subgraph isomorphism 
computations avoided

• Otherwise use subgraph isomorphism on the set of 
transactions in the intersection of the TID lists.
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FSG vs. Subdue

• No inexact graph matching
• No iterative discovery
• Restricts input in order to be more efficient

Undirected edges only
Set of disconnected graphs

• Optimizations rely on additional space for 
increased speed
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gSpan
• Given a graph dataset, D = {G0,G1,….Gn} and any 

subgraph g, the problem of frequent subgraph mining is to 
find any subgraph g such that support(g) > minSupport

• Unlike FSG, gSpan discovers frequent substructures 
without candidate generation. 

• gSpan builds a new lexicographic order among graphs, and 
maps each graph to a unique minimum DFS code as its 
canonical label. Based on this lexicographic order, gSpan 
adopts the depth-first search strategy to mine frequent 
connected subgraphs efficiently.

• gSpan discovers all the frequent subgraphs without 
candidate generation and false positives pruning. It 
combines the growing and checking of frequent subgraphs 
into one procedure, thus accelerating the mining process.
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gSpan features:
• In the context of frequent subgraph mining, the Apriori-

like algorithms meet two challenges:   
candidate generation: the generation of size (k+1) subgraph 
candidates from size k frequent subgraphs is more 
complicated and costly and
pruning false positives: subgraph isomorphism test is an NP 
complete problem, thus pruning false positives is costly.

If the entire graph dataset can fit in main memory, gSpan can 
be applied directly; otherwise, one can first perform graph-
based data projection and then apply gSpan

• Subgraph isomorphism is achieved using the canonical 
labeling techniques, DFS lexicographic order and 
minimum DFS code.

EDBT’06 Tutorial: SC
3/27/2006

Slide 90

DFS Code
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Min DFS Code and Isomorphism
• If we order all DFS codes according to the < order, we can take a 

minimum, min(G)
• min(G) is unique
• Two graphs are isomorphic iff min(G) = min(G’)

EDBT’06 Tutorial: SC
3/27/2006

Slide 92

Observations
• gSpan is a main memory algorithm
• Performance is reported for data sets up to only 320 KB
• Running time scales exponentially with large numbers of graph 

labels
• gSpan typically needs random access to elements of the graph 

database and to its projections
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Conclusions

• Graph mining is a powerful approach 
needed by many real-world applications

• There is need for both Subdue class of 
mining algorithms and frequent subgraph
class of algorithms

• Scalability is an extremely important issue
• Our approach to using SQL has yielded 

very promising scalability results (800K 
vertices and 1600K edges)
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